
146 Drawing the Post-digital Era: From Exactitude to Extravagance

“[Digital technologies] are no longer the tools for making:
they are primarily tools for thinking.”

-Mario Carpo, The Alternative Science of Computation1

“The theme of this article is translation...There are all
those other identically prefixed nouns too: transfiguration,
transformation, transition, transmigration, transfer, trans-
mission, transmogrification, transmutation, transposition,
transubstantiation, transcendence, any of which would sit
happily over the blind spot between the drawing and its
object, because we can never be quite certain, before the
event, how things will travel what and will happen to them
on the way.”

-Robin Evans, Translations from Drawing to Building2

In 2013 media theorist, Lev Manovich, wrote, “there is no
such thing as ‘digital media.’ There is only software.”3 In other
words, because all digital artifacts rely on a set of interpre-
tations of virtual signals, software and media today are
inseparable; to think of one is to think of the other. As such,
designers have come to understand acts of making as funda-
mentally tied to a set of programs and interfaces that digitize
our ideas by translating them into electric impulses. This has
been the case in architectural design for the better part of
the previous decade and is certainly the case today. However,
while this phenomenon has led to a set of norms concerning
the production of digital objects, an increase in the variety of
tools available to architectural designers (particularly from
video game design, visual effects industries, open-source
initiatives, and app developers) has opened the door to new
ways of producing and understanding architectural media.
The goal of this paper is to examine architecture’s evolving
relationship with software, and suggest a reevaluation of the
role digital mediums play in architectural education.

Beginning with Robin Evans I would argue that architects have
always had an interest in examining closely the mediums on
which they work. Since architectural media has now evolved
into primarily virtual information, we must re-examine that
relationship. Taking Lev Manovich’s dictum that “there is
only software” and recent pedagogical discussions on “com-
putation as a background condition of our reality,”4 I will
suggest that, much like they cover Brunelleschi’s rediscovery

of perspective or Alberti’s De Pictura, design curricula must
tackle the history and theory of software in order to fully com-
prehend the tools and techniques involved in contemporary
architectural design. This approach would allow designers to
critically reflect on the impact of software on culture, and in
turn the effect of digital culture on architecture.

EVERYTHING IS SOFTWARE
If Robin Evans’ ceaselessly regurgitated Translations from
Drawing to Building was to signify anything other than a
debunking of the common architectural myths associated
with notions of drawing buildings and building drawings, it
would be the emergence of a renewed interest in the intel-
lectual value of scrutinizing the very mediums in which we
work. Writing in 1986, Evans is admittedly responding to vari-
ous cultural dialogues concerning, on one hand, the fabled
autonomy of the drawing, and on the other, architecture’s
abstract disciplinary knowledge.5 We’ve heard this countless
times before, and we all know that architects do not make
buildings, they make drawings of buildings. Yet, it is thirty-
one years later, and here we are, still ruminating on what
happens when we translate between a drawing and a build-
ing. But it seems that our preoccupations today address a
different kind of translation; one not necessarily concerned
with whether the drawing itself exists as “the real repository
of architectural art.”

Before diving in, let’s make two assumptions. (1) That we live
in the world of ubiquitous software; and (2) that the archi-
tectural drawing (at least the kind that dreams of becoming a
building) is primarily a digital artifact. Putting aside any nos-
talgic opprobrium this might incite, “drawing” in the case of
this essay will neither refer to the intellectual act of disegno,
nor to the drafting of lines, whether digital or analog, projec-
tive or perspectival. Instead, “drawing” should be understood
as a placeholder for a variety of digital file formats that are
readily used in contemporary architectural practice (eg.
DWG, PDF, JPG). Therefore, given our previous assumptions,
we can situate the architect as a figure whose principal task
is not only to translate between drawing and building, but
also to translate across a vast, ever-updating landscape of
standardized file-types and graphical user interfaces. While
this may appear obvious, perhaps even remedial, a critical
discourse surrounding these processes has not surfaced until
recently.6

More Translations (from Drawing to Building)

GALO CANIZARES
The Ohio State University

The Ethical Imperative 147

An understanding of design software has been stifled by a
desire to marginalize it as a utility with the humanist paradigm
that prioritizes design intellect’s hegemony over mechanical
tools. But this analogy of the digital as a tool for the realization
of some architectural a priori is just the myth Evans debunks.7
In Translations from Drawing to Building, he famously insists
that the drawing does not reveal objective truths of architec-
tural space, but instead obfuscates truth in favor of a series of
mediated effects. The architectural drawing therefore stands
apart from the technical and becomes “more abstract in
appearance, more penetrating in effect...and suggestive of a
perverse epistemology in which ideas are not put in things by
art, but released from them.”8 And as drawing becomes ever
more digitized, this dynamic interaction between thoughts and
representations encompasses a vast landscape of mediums
in the form of software. Thus, software is no longer a vehicle
for simply communicating that which we blindly create in our
heads, but rather, much like analog drawing, contributes to
the formulation of that very thought from our first encoun-
ter with it. It is this reformulation of our relationship to the
digital—what some are calling the second digital turn—that I
wish to discuss.9 In the context of this essay, software should
be understood as the layer of interpretive interfaces that lie
between a user and a computer’s operating system. The term
digital media will be used to refer to the outputs of this layer,
the products of user’s interactions with software.

Today, from Autodesk Revit coordination to the manage-
ment of plug-in applications to optimizing files for printing,
an ever-growing repertoire of software skills are crucial to the
production, dissemination, and translation of a design project
at all scales. Because humans are largely inept at decoding
binary syntax, software is the mediator whenever ideas move
from abstract thoughts to mechanized gestures on the screen
and pixel color values transmogrify into instructions for assem-
bly. The science-fiction reality is: that our globalized world has
reached a point where most communication must be inter-
preted by some software. As Keller Easterling notes, “we know
that as soon as communications leave our lips or fingertips they
are immediately diced and rearranged into information packets
better suited for streaming digital compression.”10 However,
despite the ubiquity of the digital, I am not suggesting that
architects should become programmers, nor that computation
be conflated with design. Instead, my point is that, because it
is so pervasive there needs to be a deeper understanding of
the critical and cultural role that software plays in design pro-
cesses from education to practice. As Lev Manovich argues in
Software Takes Command, “[i]t is, therefore, the right moment
to start thinking theoretically about how software is shaping
our culture, and how it is shaped by culture in turn.”11

Manovich has widely been regarded as the progenitor of these
thoughts within the digital humanities, having been one of the
earliest thinkers to synthesize and historicize the develop-
ment of “cultural software:” a loose umbrella term referring
to computer applications involved in the creation of cultural

Figure 1: Autodesk advertising software which allows users to “make
anything” and work across distances on the Cloud and mobile devices.

148 Drawing the Post-digital Era: From Exactitude to Extravagance

artifacts, interactive services, aesthetic content, online social
interactions, and virtual experiences.12 Of course, each disci-
pline has its own catalog of go-to software, which relies largely
on a combination of specified workflows, licensing costs,
industry standards, and delivery methods. In art, for example,
“new media” artists often make use of video-game design pro-
grams to create interactive pieces. For us architects, we know
the usual suspects: Adobe Photoshop/Illustrator/InDesign,
Autodesk AutoCAD/Revit/3d Studio Max/Maya, Rhino 3d, to
name a few. Yet while students and professionals use these
programs on a daily basis to create artifacts, Manovich’s the-
ses posit that most discussions rarely touch on their impact on
cultural conventions or their historical development.

But for now, let us return to the issue of translation (from draw-
ing to building). If a major task of the contemporary architect is
to manage the collection and transmission of various file-types
through networks both local and international, then one would
expect architectural curricula to address the fundamentals
of navigating this digital landscape.13 While design pedagogy
covers disciplinary knowledge such as abstract design and
communication techniques, technical skills for successfully
outputting a desired object from a piece of software are not
as synthesized as drawing, which is taught both theoretically

and technically (think: one seldom encounters how to draw a
perspective without mentioning Brunelleschi’s discovery of it).
In the case of software, best practices for compression, optimi-
zation, or conversion are engaged as means to particular ends;
rarely as historical or theoretical concepts. Surely an immer-
sion into the annals of software’s history and socio-cultural
impact is as warranted as the lineage of drawing mediums
from the Renaissance. At least from a desire for a well-rounded
architectural education, Ivan Sutherland’s invention of interac-
tive computer graphics must be mentioned in the same breath
as Brunelleschi’s perspective.

However, this need for profound computational knowledge
is a relatively recent development in our discipline. It can be
seen as an evolution of those digital design processes, codified
during the early 2000s (a.k.a. the first digital turn), that were
results of students tinkering with early modeling software.14
Although important themes surfaced then, such as the basic
discrepancies between OBJ meshes and IGES B-splines or those
between raster and vector images, it should be noted that this
insight was shared at the discretion of those early adopters of
digital tools who saw the medium as primarily a playground
for architectural form. Designers had little to no background
in computation, and as a result, software was perceived as an
extension of the hand. A decade later, it is evident that design
pedagogy and design software have not kept up with each
other. Most students enter the professional field with vast
technical bravado and an ability to translate back and forth
between three-dimensional and two-dimensional media,
but few are able to describe exactly what takes place inside
these steel, whirring boxes, or why certain operations work
efficiently whereas others do not. (Pop quiz: why is an STL file
better for 3D printing than an OBJ file?)15

I would argue that the presumption of software as a simple
tool subservient to our architectural whims is an outdated
pedagogical model. During the first digital turn, the assertion
that a designed product is only as good as the designer would
yield nods of agreement from most in the field, a sentiment
derived perhaps from the skeuomorphic qualities of the digi-
tized drafting table that is CAD’s “paperspace”. Yet, the number
of managerial decisions to make regarding our products has
grown exponentially since, warranting a need for deeper grasp
of these systems. If a student sketches by hand on a tablet, she
will immediately have to decide whether to save the sketch as a
JPEG, PNG, TIFF, or any other image file-type as well as the reso-
lution of the sketch. Not only has this blurred the distinction
between drawing and image, but it has also added the dimen-
sion of “compatibility” to the product: the sketch can only be
read by software that accepts that file-type. Let us also not for-
get that some file formats are proprietary and require a specific
version of an application for full use. This user-level politics is

Figure 2: Morpholio Trace is a “smart” sketching app for mobile devices,
which simulates pen drawing with CAD features.

The Ethical Imperative 149

further problematized as designers are forced to contemplate
backwards compatibility, which excludes users of outdated
software, and legal predicaments of falsely licensed applica-
tions, which may have worse repercussions. Knowing that
the drawing contains more data than relationships between
pixels such as security settings, permissions, and compression
methods sheds light on the politics of the drawing at a differ-
ent level.

As Building Information Modeling software spreads its reach
and an increasing number of design “apps” enter the discipline,
fewer analogies accurately depict our relationship to these vir-
tual interfaces. For example, if drafting in CAD is akin to drafting
by hand, then BIM is like building the building, before you build
the building: a simulated act. Not only is it a digital simulation,
but it is also dependent on data management. Thus, the pro-
cess of translating from drawing to building today, depends
less on one’s ability to form an apt analogy of what a “draw-
ing” is or what it represents, and more on one’s expertise in
navigating information management systems, and coordinat-
ing between file-types from Navisworks, Revit, AutoCAD, Revit

MEP, RISA 3D, Autodesk360, etc. But what if instead of learning
the actions to perform in each program, design software was
regarded as a theoretical concept; a discourse through which
software interfaces, workflows, and file-types are dissected
to relate to our shared experiences with other cultural media
as a whole.16 This new addition to architectural discussions,
dedicated to a broader view of design software, might tease
out new methods for translating from drawing to building.

MORE THAN ONE WAY TO SKIN A CAT
Apropos of the above, let us look at a hypothetical scenario.
Take a simple topographical survey; a set of information
common to both architects and landscape architects, not to
mention a key component to a comprehensive building proj-
ect. A traditional approach to modeling such a survey is to
extract contour lines at specific intervals, which results in an
abstract, stepped representation of the specific topography.
To represent the surface as a smoother continuous surface,
one would have to interpolate between these lines using com-
mon B-spline modifiers, either “lofting” or “draping” complex
doubly-curved surfaces over the contour splines as formwork.
The result would be an approximation of a more realistic ter-
rain. However, let’s say that the designer had taken a course in
the history of computer graphics. She would have most likely

Figure 3: Difference between a displacement mapped landscape and a
contoured drawing of the same landscape.

150 Drawing the Post-digital Era: From Exactitude to Extravagance

covered early attempts at representing complex textures using
displacement mapping algorithms, such as ones used by Pixar’s
early RenderMan engine. In this process, surfaces are subdi-
vided into triangular meshes whose vertices’ height coordinate
correspond to a specific distance from an origin managed by a
greyscale “heightmap.” In other words, instead of interpolating
offset contour lines, a displacement map on a mesh surface
recreates a topography based on a series of points dictated by
pixel grayscale value. On a typical 8-bit RGB image, this allows
for up to 256 different height values, resulting in a high-fidelity,
realistic terrain [figure 3].

Now, the curious part about this hypothetical scenario is that
the concepts remain software-independent. Most modeling
software today will facilitate both methods (contouring and
displacement) to some extent. However, disciplinary bias
separates these ways of working. Architectural design favors
the former, contour-based model, and video game/VFX design
favors the latter. Tracing the historical lineage of these biases,
our student will find that displacement methods were much
more computationally demanding, and thus were reserved
for industries with large budgets.17 Architects, using relatively
low-cost software in the early days of CAD such as Form*Z
and Rhino 3D, would naturally gravitate towards a simpler,
faster, and more abstract method for representing topogra-
phies. Indeed, many of our disciplinary proclivities for certain
methods trickle down from an era where computation was a
precious resource to be conserved. As Mario Carpo has recently
noted, however, the second digital turn could be understood as
a shift from the formal vocabulary of calculus to that of infinite
datasets. He suggests that if calculus is a compression tool used
to express a complex geometrical order in a simple way, this
compression is no longer necessary when processors can add
up a large dataset to represent the same figure.18 Our modeling
scenario presents another analogy for this shift: given the level
of computing power today, why represent a landscape through
approximate curves, when you can recreate topography with a
pixel-to-polygon level of resolution?

There are obviously more complex translations at play in
the execution of displacing bitmaps into three-dimensional
landscapes. For one, heightmaps are only produced in a few
ways: (1) by compositing satellite imagery at different points
in time to calculate elevation data, or (2) by randomly gener-
ating grayscale fields with various bitmap algorithms, such as
Perlin noise.19 Both call for interactions with software outside
the canon of Adobe and Autodesk; a daunting task for most
students I’ve taught. Such an endeavor would require one to
be fluent in the kinds of file-formats available and be able to
translate from one to another with minimal loss of information.
But more importantly, our hypothetical designer would have
to choose which software combination would yield faster (or

cheaper, or more detailed, or lighter) results, instead of forcing
a method into a program better suited for another technique.

When I introduce students to Autodesk 3d Studio Max, I usu-
ally begin by retelling a short history of modeling software.
Typically, this involves an explanation of the OBJ, FBX, DXF/
DWG file standards, a short anecdote about early visual effects
technologies, a brief mention of Form*Z’s influence (as well
as Peter Eisenman’s influence on Form*Z), and Autodesk’s
monopolization of the field. After understanding the program’s
background, we start to familiarize ourselves with the user
interface and tools. What quickly emerges through this process
are a set of cross-platform terms and common techniques. For
instance, if one knows the workflow for producing a texture
map in Rhino, then doing so in other modeling programs should
be straightforward. But this understanding would not come
easily by teaching each program discretely. In order to facilitate
this general theoretical knowledge of tools, software should be
regarded as a species: each with unique traits, but nevertheless
related.

While there are discrepancies throughout this vast landscape
of software species, the sheer abundance of them now allows
designers more flexibility, particularly when it comes to smaller
experimental tasks. Additionally, “app culture” has infiltrated
the design field with lighter versions of bigger software as well
as open-source programs, in effect democratizing access to
design tools. Not only does this allow us to quicken the pace of
working, but naturally extends our repertoire of techniques,
such as drawing with our fingers on a touchscreen or navigat-
ing 3D models on mobile devices. It is therefore inevitable
that educators teach not only software as a tool, but software
as an extension of our everyday interactions with interfaces.
As these interactions continue to evolve, I have an increasing
suspicion that themes from gaming, interface, software, and
internet studies will keep finding their way into design curricula
at large. The need for tutorial-based, step-by-step sequencing
of interactions is already dwindling in favor of a more expan-
sive approach where students experiment across a variety of
differing media, testing the limits of file-formats, discovering
new workflows, and translating their concepts across plat-
forms seamlessly.20 Educators should engage this shifting mode
of operating if we are to come to terms with the truth of the
matter: which is that software is the background condition of
our reality.

ENDNOTES
1 Mario Carpo, “The Alternative Science of Computation,” e-flux Architecture

(June 2017) accessed June 30, 2017. http://www.e-flux.com/architecture/
artificial-labor/142274/the-alternative-science-of-computation/

2 Robin Evans, “Translations from Drawing to Building,” AA Files, no. 12. (London:
Architecture Association Press, 1986).

3 Lev Manovich, Software Takes Command (London: Bloomsbury Academic, 2013),
152.

The Ethical Imperative 151

4 Ellie Abrons, “Becoming Digital” (syllabus, University of Michigan, Ann Arbor, MI,
2017).

5 Ibid.

6 Abrons’ project, “Becoming Digital” asks students to critically engage computa-
tion as a “background condition of our reality.” See also John May’s didactic
look at digital images in “Everything is Already an Image” in Log 40, ed. Cynthia
Davidson (New York: Anyone Corporation, 2017).

7 Curtis Roth has described how Evans’ thesis suggests a paradox of the origins
of architectural thought. See “On Our Dark Products” in Some Dark Products: A
Travelogue of Nine Instruments for Architecture (Stuttgart: Edition Solitude Press,
2017).

8 Evans, “Translations…” 14

9 Mario Carpo, “ACADIA 2016 Keynote,” Vimeo video, 55:29. Posted [March 2017],
https://vimeo.com/210622365

10 Keller Easterling, “Another Part of Speech,” in Dispute Plan to Prevent Future
Luxury Constitution, ed. Benjamin H. Bratton (Berlin: Sternberg Press, 2015).

11 Manovich, “Introduction,” in Software Takes Command. 20.

12 Manovich provides a rudimentary list of this category, but claims it will continue
to evolve. Ibid. 23

13 Roth has developed a syllabus for introducing some of these themes in architec-
ture school. See “A Syllabus for Yung Distance,” in Some Dark Products.

14 An excellent example would be the development of Form*Z at The Ohio State
University, where architects and educators worked together to develop a compre-
hensive 3d modeling program. Peter Eisenman also famously contributed to the
design of the program. See Pierluigi Serraino, History of Form*Z (Basel: Birkhauser,
2002), 23.

15 Thought both file types describe geometry, STL is optimized for stereolithography
meaning it organizes the geometry in layers which can be read by a stereolithog-
raphy machine, while OBJ organizes the geometry primarily for viewing in 3D
graphics engines, and is thus more complex.

16 This is already happening within the Digital Humanities. Manovich is part of a
group of editors at the MIT Press who are publishing a collection of books under
the subject of “Software Studies.” See https://mitpress.mit.edu/books/series/
software-studies.

17 In fact, The Ohio State University used to have a course within the Advanced
Computing Center for the Arts and Design, which covered such topics. See Wayne
Carlson, “A Critical History of Computer Graphics and Animation,” (syllabus, The
Ohio State University, Columbus, OH, 2007) https://excelsior.asc.ohio-state.
edu/~carlson/history/.

18 Carpo, “ACADIA 2016 Keynote.”

19 19. Michelle Chang has recently covered a quick history of the Perlin noise algo-
rithm, suggesting that some scholars are starting to historicize these moments.
See “Turning a Banana Inside Out,” in PLAT 6.0 Absence, ed. Melis Uğurlu
(Houston: Rice School of Architecture, 2017).

20 Luke Pearson encourages his students to analyze video game environments
and their critical potential. See “Designing by Decoding: Exposing Environments
Mediated by ‘Cultural Software’.” Journal of Architectural Education 71:2 (2017),
197-210. https://doi.org/10.1080/10464883.2017.1340773

